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Dynamic quantum Kerr effect in circuit quantum electrodynamics
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A superconducting qubit coupled to a microwave resonator provides a controllable system that enables
fundamental studies of light-matter interactions. In the dispersive regime, photons in the resonator exhibit
induced frequency and phase shifts which are revealed in the resonator transmission spectrum measured with
fixed qubit-resonator detuning. In this static detuning scheme, the phase shift is measured in the far-detuned,
linear dispersion regime to avoid measurement-induced demolition of the qubit quantum state. Here we explore
the qubit-resonator dispersive interaction over a much broader range of detunings, by using a dynamic procedure
where the qubit transition is driven adiabatically. We use resonator Wigner tomography to monitor the interaction,
revealing exotic nonlinear effects on different photon states, e.g., Fock states, coherent states, and Schrödinger
cat states, thereby demonstrating a quantum Kerr effect in the dynamic framework.
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I. INTRODUCTION

A major focus of quantum optics is the study of atom-
photon interactions at the microscopic level [1]. Atomic and
solid-state cavity quantum electrodynamics (QED) systems
[2–5], with strongly enhanced coupling strength between
confined atoms and photons, have been developed to pursue
this goal. The superconducting version, circuit QED, provides
a test bed for quantum microwave photons [6] interacting with
superconducting qubits [7–9]. By placing a one-dimensional
transmission line resonator in close proximity to a super-
conducting qubit [10–16], the electromagnetic fields in the
resonator interact strongly with the qubit, forming a composite
system with a modified energy spectrum [see Fig. 1(b)].
The resonator photon energy is effectively dispersed by the
qubit, with a dispersion strength that depends strongly on the
qubit-resonator frequency detuning. In previous experiments,
the frequency and phase shift of transmitted photons were
measured with a fixed qubit-resonator detuning, which we
term the static scheme. Although the photon dispersion is well
understood in this regime and provides a direct qubit readout
scheme [17], it is restricted to measurements with the qubit
far detuned from the resonator to avoid measurement-induced
demolition of the qubit quantum state [18].

In this paper, we introduce an alternative dynamic scheme
for measuring qubit-photon interactions. As we adiabatically
change the qubit frequency, we measure the accumulated phase
shift of the photons while minimizing energetic interactions
with the qubit. The detuning can range from large detuning
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corresponding to the linear response regime to strong nonlinear
dispersion found near and at resonance. The photonic response
is measured with Wigner tomography, which enables a
complete map of the photon state after a dispersive interaction
with the qubit [19]. We further investigate the response of
completely nonclassical photon states, beyond the scope of
prior static measurements, which have been restricted to mea-
surements of classical coherent states. Measurements of the
nonlinear dispersive response of superpositions of Fock states
and Schrödinger cat states exhibit an excellent correspondence
with the expected dynamic response and demonstrate a
quantum version of the Kerr effect. Classically, the Kerr
effect, a nonlinear response of macroscopic materials, is where
the refractive index of a medium changes when varying the
electromagnetic field strength. In this quantum version, a
single qubit medium induces Fock-number-dependent phase
shifts to quantum state photons. Although the near-resonant
nonlinear response of coupled atom-photon systems has been
previously explored using two-tone [20,21] and high-power
spectroscopy [4,22–24], our approach delineates the practical
aspects associated with the strong nonlinear phase shift of
photons in the time domain. In the future, it should be
possible to exploit the large photon phase shift resulting
from small qubit-resonator detunings to improve the quantum
nondemolition qubit readout with higher fidelity.

II. EXPERIMENT AND RESULTS

We use a half-wavelength superconducting coplanar waveg-
uide (CPW) resonator coupled to a superconducting Josephson
phase qubit [Fig. 1(a)]. The resonator has a fixed frequency
of ωr/2π ∼ 6.32 GHz and an energy relaxation time of
T1 ∼ 2 μs. The flux-biased phase qubit is a strongly nonlinear
electrical quantum circuit, with a tunable |g〉 ↔ |e〉 transition
angular frequency ωq and an |e〉 ↔ |f 〉 transition frequency
∼200 MHz smaller (|g〉, |e〉, and |f 〉 are the ground, excited,
and third level qubit states) [25]. The qubit angular frequency
ωq can be tuned rapidly using quasi-dc σz pulses on the
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inductively coupled qubit flux bias line; qubit energy level
transitions are driven by π -pulse (σx,y) resonant microwave
signals applied to the same line [26,27]. The qubit state can be
measured destructively using a single-shot readout involving
short flux pulses followed by measurement using an on-chip
superconducting quantum interference device (SQUID) [28].
The qubit has a relaxation time of T1 ∼ 450 ns and a phase
decoherence time of T2 ∼ 150 ns. The qubit and resonator
are capacitively coupled with a coupling strength of g/2π ∼
9 MHz (i.e., the qubit-resonator gap from spectroscopy is
∼18 MHz at resonance).

The device used in this experiment has been described
in detail previously [29–31]. The fabrication process is a
combination of photolithography and plasma etching on
a multilayered structure, with a superconducting rhenium
base film, Al/AlOx/Al Josephson junctions, and amorphous
silicon for the shunt capacitor and wiring crossover dielectrics
[25]. An aluminum sample box containing the wire-bonded
device was mounted on the mixing chamber of a dilution
refrigerator operating at �25 mK. The quasi-dc σz tuning
pulse was generated by custom electronics including a field
programmable gate array (FPGA)-controlled digital-to-analog
(DAC) converter [25]. Two similar DAC outputs, the I and Q
signals of an IQ mixer, provided the sideband mixing, phase,
and pulse-shape control of the carrier signal from a microwave
generator to produce the σx,y pulse. The qubit and resonator
frequencies were determined by spectroscopic measurements.
The qubit-resonator coupling strength g and the resonator
microwave pulse amplitude α were calibrated using a photon
population analysis for a coherent state [12].

As shown for the specific case of |0,e〉 ↔ |1,g〉 in Fig. 1(c)
[where states are denoted by |n,q〉 for resonator state |n〉 and
qubit state |q〉, Fig. 1(b)], the dynamic dispersion scheme
involves an adiabatic procedure [32] to vary the detuning
� = ωq − ωr and thus the eigenenergies of the qubit-resonator
system. We initialize the coupled system in the far-detuned
regime, where the dispersive interaction is extremely weak.
We then smoothly adjust the qubit frequency as a function
of time t , so that the coupled system adiabatically follows its
instantaneous eigenstates with eigenenergies E(t). The energy
of a single photon (relative to the vacuum) is thus dispersed
to ep(t) = E|1,g〉(t) − E|0,g〉(t), and the dynamic phase [33]
accumulates as θ (τ ) = − 1

h̄

∫ τ

0 [ep(t) − ep(0)]dt . Although the
system is returned to its initial settings at the end of the
interaction, an accumulated phase shift is acquired even though
the net energy exchange is zero. A Berry’s phase component
is ruled out because the parameter space is one dimensional.
We note that the qubit-resonator coupling strength is to all
practical purposes constant in our system and the detuning
is time dependent, in contrast to the time-varying coupling
and constant detuning displayed by Rydberg atoms passing
through a microwave cavity [34–36].

We first investigated the phase shift of a one-photon Fock
state due to its interaction with a qubit in its ground state. The
resonator was initialized in the Fock-state superposition |0〉 +
|1〉, where |0〉 serves as a reference state [37]. The initial res-
onator state was prepared according to the Law-Eberly proto-
col, where the qubit is sequentially excited to a calculated state
and partially transferred to the resonator [19]. The detuning
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FIG. 1. (Color online) (a) Circuit diagram for the coupled
qubit-resonator system. The superconducting phase qubit has a
ground- to excited-state transition frequency of ωq/2π ∼ 6 GHz.
The flux bias line is coupled to the qubit through a mu-
tual inductance. A three-junction superconducting quantum in-
terference device (SQUID) is optimized to read out the qubit
state. The CPW resonator has a constant resonant frequency of
ωr/2π ∼ 6.32 GHz. The resonator is weakly coupled to both
the qubit and the external microwave source by small capacitors.
(b) Energy levels of the coupled system. The solid (dashed) lines de-
note the energy levels with (without) the qubit-resonator interaction,
with |n,q〉 representing the photon number |n〉 and the qubit state
|q〉. The red (I) and blue (II) arrows represent one- and two-photon
transitions with the qubit ground state. The green (III) arrows
represent one-photon transitions with the qubit excited state. (c) Plot
of the |1,g〉 and |0,e〉 energies as a function of detuning � = ωq − ωr ,
calculated from the Jaynes-Cummings model using our experimental
parameters. In an adiabatic process, the system initially at |1,g〉 [red
(gray) dot] follows the path indicated by the red (gray) arrow. The
resonant avoided-level crossing is g/π ∼ 18 MHz. (d) Schematic of
the experimental sequence, describing system initialization (labeled
by “I”), adiabatically tuning and detuning the qubit, and finally
performing Wigner tomography measurement (labeled by “M”) of
the final photon state. A reset pulse [31] to ground is applied to the
qubit if it was initially prepared in the excited state, to allow the qubit
to perform the measurement. The dispersive part of the pulse is also
shown schematically in panel (c).

was set to �i/2π = −250 MHz, giving a small photonic
component g/�i ∼ 4%. We then applied a trapezoidal tuning
pulse to the qubit, with linear ramp rate k = 5 MHz/ns and
interaction detuning �f for an adjustable time τ [Fig. 1(d)].
At the end of the tuning pulse, the qubit was effectively
decoupled from the resonator and in its ground state, with a
small error due to the nonideal adiabatic process. The Wigner
tomogram of the final resonator state was reconstructed by
displacing the resonator state with a coherent microwave pulse
(with complex amplitude α) and performing a qubit-resonator
swap, from which we extracted the photon-state probability
Pn(α) [19,38]. With sufficient sampling points α in the
resonator phase space, we calculated the resonator density
matrix and reconstructed the quasiprobability W (α) [38].

We plot the resulting Wigner functions for detuning
�f /2π = −57 MHz and five different durations, τ , in the top
row of Fig. 2(a). Negative quasiprobabilities are a signature
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FIG. 2. (Color online) Wigner tomography and phase rotation
measurement for the initial resonator state |0〉 + |n〉. (a) Recon-
structed Wigner functions for |0〉 + |1〉 after a dispersive interaction
with a ground-state qubit at �f /2π = −57 MHz for five different
values of τ . The corresponding density matrices are shown in the
bottom row. Sampling points [38] for W (α) included 60 points
around two concentric circles with radii |α| = 1.10 and 1.45.
(b) Rotation angle of ρn0 as a function of τ , measured from its value
at τ = 100 ns. (Inset) The n-dependent phase rotation rate is obtained
from a linear fit to the data in panel (b). The results from both the linear
approximation (black line) and the exact diagonalization [red (gray)
line] of the Jaynes-Cummings Hamiltonian are displayed without
any fit parameters. (c) Phase rotation speed of ρn0 as a function of
both �f and n. Solid lines are theoretical predictions from the exact
diagonalization of the Jaynes-Cummings Hamiltonian.

of the expected nonclassicality of the superposed Fock states.
The diagrams are not rotationally symmetric, encoding the
relative phase shift between the |0〉 and |1〉 states. As the
dispersion duration τ increases, the Wigner function rotates
counterclockwise about the origin. The rotation is due to
an overall phase shift, induced by the qubit state during the
dispersive interaction. We plot resonator density matrices in
the Fock basis in the bottom row of Fig. 2(a). In each density
matrix, the population probabilities ρ00 and ρ11 are nearly
identical, but energy relaxation becomes more pronounced
as τ increases. For τ = 0 ns, the off-diagonal terms ρ10 and
ρ01 are represented by horizontal arrows, indicating no phase
shift as expected. As τ increases, the arrow representing ρ10

rotates with the same angle as that of the overall Wigner
function, exhibiting an accumulated nonzero phase shift;
the time dependence of this phase rotation angle is shown
in Fig. 2(b). The constant rotation rate represents a phase
rotation speed of r0 = dθ/dτ = 3.1π rad/μs and is equal to
the expected frequency shift of the one-photon state |1〉 at the
detuning �f .

We next investigated higher-number photon states by
initializing the resonator in |0〉 + |n〉 with n from 2 to 5.
Following the same pulse sequence, the density matrices
and the Wigner functions of the final photon states were
measured. Figure 2(b) shows the phase rotation angles of

the ρn0 element of the density matrix versus τ . Linear fits
allow us to extract the n-dependent phase rotation speed. In
the far-detuned regime, the angular frequency shift scales as
expected with photon number as ng2/|�f | [cf. Eq. (3) in the
Appendix]. This linear approximation [black line, Fig. 2(b)
inset] deviates from experimental data as n increases, because
the dressed photon energies become anharmonic; a rigorous
solution of the Jaynes-Cummings model [cf. Eq. (1) in the
Appendix] is in good agreement with the data [red (gray)
line, Fig. 2(b) inset]. The phase rotation rate as a function of
detuning �f [Fig. 2(c)] is also in excellent agreement with
the full Jaynes-Cummings model, extending the nonlinear
response measurements to zero detuning. This rate corre-
sponds to the refractive index of macroscopic materials, where
a single qubit, as an effective electric dipole, is the index
medium which interacts with the electric field of quantum
state photons. The Fock-state-dependent phase shifts imply a
photon-number-dependent change in the refractive index of the
medium, demonstrating a quantum Kerr effect in the dynamic
framework. Although the energy levels of the qubit-resonator
system can be measured using spectroscopy [39], here the
nonlinear phase shift in the strong dispersive regime is directly
and quantitatively measured in the time domain in a circuit
QED system.

In a standard resonator transmission measurement, a co-
herent state |α〉 is injected in the resonator by a classical
microwave pulse. Here we prepared a coherent resonator
photon state with complex amplitude α ∼ 2.0 and applied
the dynamic scheme to measure the phase shift induced by
interaction with a ground-state qubit. Figure 3(a) presents the
measurement after a trapezoid pulse at �f /2π = −50 MHz.
The Wigner function of the initial state (τ = 0 ns) shows
a coherent peak centered at α and a symmetric noise of
quantum uncertainty. As τ increases, the coherent peak rotates
counterclockwise about the origin, with only a slight and
gradual increase in distortion. For each Fock constituent, the
linear approximation gives a phase shift rate of rn ∼ nr0 =
ng2/|�f |. The coherent state is thus uniformly transformed to
|αeir0τ 〉 after time τ , based on the Poissonian distribution. In
the Wigner representation, each Fock constituent has a rotation
rate of rw,n = rn/n = r0 and the Wigner function rotates as a
whole with the rotation angle r0τ , which is equal to the phase
shift measured in a resonator transmission measurement. This
simple behavior is most accurate in the far-detuned regime,
where the dressed resonator levels are still nearly equally
spaced. At small detuning, where anharmonicity becomes
more significant, the various Fock components begin to rotate
out of phase and the Wigner function begins to display
squeezing [see Fig. 3(a)].

To further illustrate the linear-nonlinear crossover of the
dispersive interaction, we investigated the Schrödinger cat
state |α = √

2i〉 + |α = −√
2i〉. In Fig. 3(b) we display the

reconstructed Wigner functions for four different values of
detuning �f and three interaction times τ . At zero interac-
tion time, the Wigner function contains two well-separated
Gaussian peaks, arising from the two coherent state elements,
with clear interference fringes between the two peaks. The
Wigner function rotates counterclockwise with increasing time
τ , as before. For detuning �f /2π = −56 MHz, the shape
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FIG. 3. (Color online) (a) Wigner functions and density matrices
for a coherent state (α ∼ 2.0) interacting with a ground-state qubit
at three different durations τ for detuning �f /2π = −50 MHz.
Axes at the origin are indicated. The center of the coherent-state
Wigner function rotates counterclockwise about the origin with time.
(b) Wigner functions for a Schrödinger cat state |α = √

2i〉 + |α =
−√

2i〉 after different interaction times with a ground-state qubit. A
fixed detuning �f from −56.3 to −14.1 MHz was used for each
column. As the duration τ increases from 150 to 250 ns, the Wigner
function rotates counterclockwise, with the rotation rate increasing
as the absolute value of detuning �f decreases. For small detunings,
enhanced distortions appear in both the coherent peaks and the
interference fringes.

of the Wigner function is almost preserved as τ increases,
consistent with expectations from the linear approximation.
As the absolute value of detuning �f decreases, the rotation
speed increases and distortion becomes significant. The two
Gaussian peaks are twisted and the interference fringes deform
with time, due to the differing rotation speeds of the Fock
components. This strongly nonlinear effect is most prominent
for zero detuning, where the rotation rate scales as rw,n ∝
1/

√
n [20,23].

The examples above were measured with a qubit initialized
in its ground state, for which qubit relaxation and phase
decoherence are less important. We also examined the response
of a resonator interacting with a qubit initialized in the
excited state. Figure 4(a) shows the Wigner function for
a resonator initialized in |0〉 + |1〉 after interacting with
an excited-state qubit at detuning �f /2π = −35 MHz. In
contrast to the response seen with a ground-state qubit,
we observe the opposite rotation direction, indicating a
negative shift in photon frequency and phase. The nonclassical
negative quasiprobabilities of the Wigner function diminish
much more quickly, in accordance with the rapid decoherence
of the off-diagonal terms in the density matrix. In addition,
for three different final detunings �f [Fig. 4(b)], the phase
rotation angle of ρ01 is no longer linearly dependent on τ but
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FIG. 4. (Color online) Measurement of photon states after dis-
persive interaction with an excited-state qubit. To minimize qubit
relaxation during the interaction, we use a higher tuning ramp speed
of k = 7 MHz/ns. The qubit was reset to its ground state prior to the
tomography measurement by transferring the excitation to a nearby
two-level state using an iSWAP gate [31]. (a) Wigner functions and
density matrices for the initial resonator state |0〉 + |1〉. The dispersive
interaction was measured for detuning �f /2π = −35 MHz for five
different durations τ . (b) Rotation angle for ρ10 vs τ for three different
detunings �f . Solid lines are numerical simulations of the Lindblad
master equation including both system decoherence and the third level
of the qubit. However, we have to use a shorter qubit decoherence
time to yield reasonable agreement between the experimental and
theoretical results. For |�f |/2π of 25, 35, and 45 MHz, the qubit
relaxation times T1 were 200, 220, and 250 ns, respectively. (c) Wigner
function for a coherent state after interacting with an excited-state
qubit for τ = 220 ns at �f /2π = −75 MHz. (d) Radially averaged
W (α) as a function of the angular coordinate, extracted from the
Wigner function in panel (c).

shows a periodic S-shaped structure [Fig. 4(b)], which can be
related to qubit relaxation.

To understand the effects of qubit relaxation, we inves-
tigated the response of a coherent photon state [Fig. 4(c)].
During the dispersive interaction, the qubit can relax at any
moment, performing a stochastic quantum jump in its time
trajectory. As a consequence, the coherent peak in the Wigner
function will initially rotate clockwise, but when the qubit
relaxes it will switch to a counterclockwise rotation for the
remainder of the dispersive interaction. The amplitude of the
jump probability is determined by the qubit relaxation time T1

and decays exponentially as time increases. The reconstructed
Wigner function thus comprises the main coherent peak (from
the excited-state qubit) accompanied by a small peak with a
tail (due to rotation from the ground-state qubit). Numerical
simulations of the Lindblad master equation are quantitatively
consistent with the experimental results (not shown).

For a general resonator state interacting with an excited
qubit, the qubit relaxation and the mixed qubit state lead to a
decoherence effect on the final photon state. The decoherence
effect is averaged over many individual quantum jumps in
the ensemble measurement required for collecting quantum
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statistics. For a resonator initialized in |0〉 + |1〉, the excited
qubit disperses the photons with a phase shift, i.e., rotates
the horizontal off-diagonal vector ρ01 to an angle θ (τ ). The
off-diagonal terms from qubit quantum jumps are represented
by vectors with rotation angles distributed over the range
[θ (τ ), − θ (τ )] and amplitudes corresponding to the probability
of the specific quantum jump. Averaging over all the vectors
resulting from quantum jumps decreases the phase rotation
angle of ρ01 when θ is small, i.e., still an acute angle. When
θ is larger than π/2, the averaged vectors from the qubit
relaxation increase the phase rotation angle. This explains the
S-shaped structure in the time-dependent phase rotation angles
[Fig. 4(b)]. These data are in fact predicted [Fig. 4(b)] from
numerical simulations using the Lindbald master equation
(cf. the Appendix) incorporating the third qubit level, qubit
decoherence, and two-level states (TLS).

III. CONCLUSIONS

In conclusion, we have used an adiabatic dynamic control
of the qubit to study its dispersive interaction with a cavity
resonator. In this dynamic scheme, the frequency shift of
multiphoton Fock states is extended to the strongly nonlinear
dispersive regime, close to zero detuning. We can fully control
and measure the accumulated phase shift of complex photon
states, demonstrated by the excellent agreement between
the experimental data and the theoretical prediction. In the
strongly nonlinear dispersive regime, a quantum Kerr effect
is observed for the coherent and other nonclassical photon
states: We illustrate the nonlinear response of photons to the
refractive index effect of our artificial atom using Wigner
tomography. Furthermore, we reveal the distinct phase shift
of photons induced by the excited-state qubit, and we interpret
the peculiar photon decoherence resulting from qubit-state
relaxation.
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APPENDIX: MODELING AND SIMULATION

The coupled qubit-resonator system is described by the
Jaynes-Cummings Hamiltonian [1], H = h̄ωr (a†a + 1/2) +
h̄ωqσz/2 + h̄g(σ+a + a†σ−), where h̄ωr is the single photon
energy of the relevant electromagnetic field mode, h̄ωq is the
excitation energy of the qubit, and a†(a) and σ+(σ−) are
the creation (destruction) operators for the resonator photons

and the qubit, respectively. With the coupling strength g,
the interaction term describes the energy exchange between
the qubit and the resonator. The photon energy is effectively
dispersed by virtual energy exchange when an electromagnetic
wave transmits through the resonator at a detuning of � =
ωq − ωr . In the Jaynes-Cummings model, the qubit-resonator
interaction leads to two eigenenergies, nh̄ωr ± h̄

2

√
4g2n + �2,

for each state pair |n,g〉 and |n − 1,e〉 (� < 0 is assumed). As
shown in Fig. 1(b), the energy of an n-photon state is dispersed
to

nep,g = E|n,g〉 − E|0,g〉

= nh̄ωr + h̄

2

(√
4g2n + �2 − |�|), (A1)

when interacting with a ground-state qubit. With the excited-
state qubit, the dispersed energy becomes

nep,e = E|n,e〉 − E|0,e〉

= nh̄ωr − h̄

2

(√
4g2(n + 1) + �2 −

√
4g2 + �2

)
.

(A2)

In the far-detuned regime, the linear approximation is applied
and the n-photon energy is simplified to be

nep,σz
� nh̄ωr + σznh̄g2/� (A3)

for the ground-state and excited-state qubit (represented
by σz).

The dispersive qubit-resonator interaction can be strongly
affected by the qubit relaxation and decoherence. Our numeri-
cal simulations used the Markovian Lindblad master equation
for the system density matrix ρ,

dρ

dt
= − i

h̄
[H (t),ρ] +

∑

L1,L2

L · ρ · L† − 1

2
L† · L · ρ

− 1

2
ρ · L† · L,

where H (t) is the instantaneous total Hamiltonian and two
superoperators, L1 = 1/

√
T1σ

− and L2 = 1/
√

T2σ
+σ−, de-

scribe qubit relaxation and decoherence. To simulate the phase
qubit, the third qubit level can be added in the numerical master
equation. We find that for the photon-state phase shift induced
by a ground-state qubit, the numerical results of the master
equation including decoherence and the third level contribution
are very close to the analytic solution of the Jaynes-Cummings
Hamiltonian without dissipation, with differences smaller than
our experimental resolution. For photons interacting with
an excited qubit, in contrast, numerical simulations with
both decoherence and the third level have to be applied
when comparing experimental data with theoretical results
[see Fig. 4(b)].
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